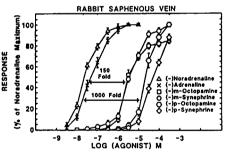

$^{\alpha}\text{-}ADRENERGIC$ ACTIVITIES OF ENANTIOMERS OF ISOMERIC OCTOPAMINES AND SYNEPHRINES


C.M. Brown¹, J.C. McGrath², J.M. Midgley³, A.G.B. Muir², J.W. O'Brien², C.M. Thonoor³ and C.M. Williams²: 1-Syntex Research Centre, Riccarton, Edinburgh EH14 4AS; 2-Institute of Physiology, University of Glasgow, Glasgow G12 8QQ; 3-Department of Pharmacy, University of Strathclyde, Glasgow G1 1XW; 4-Department of Radiology, University of Florida, Gainesville, Florida, U.S.A.

m- and p-Hydroxyphenylethanolamine (octopamine) and the corresponding N-methyl derivatives, the synephrines, occur naturally (in sympathetically innervated organs and adrenal gland respectively; Ibrahim et al, 1985) but their physiological roles are unknown. The racemate of each amine was resolved and the dose-response curves determined for the activities of the corresponding enantiomorphs on α_1 (rat aorta) and α_2 (rabbit saphenous vein) adrenoceptors (see figures and Table 1).

Table 1 Relative potencies

Compound	α_{1}	α_{2}
(-)Adrenaline (-)Noradrenaline (-)m-Octopamine (-)m-Synephrine (-)p-Octopamine (-)p-Synephrine (+)Noradrenaline (+)m-Octopamine (+)m-Synephrine (+)m-Synephrine (+)p-Octopamine	1.51 1.00 0.16 0.16 0.001 0.001 0.03 0.02 0.0004 0.0002	0.53 1.00 0.006 0.007 0.001 0.0006 0.02 0.001 0.0002 0.00008
(+)p-Synephrine	0.00002	<0.00002

The rank order of potency of the (-)-isomers and (+)-forms (for both α_1 and α_2 -adrenoceptors) was, respectively: NA>m-octopamine \blacksquare m-synephrine> p-octopamine \blacksquare p-synephrine and NA>m-octopamine>m-synephrine>p-octopamine>p-synephrine. However, the potency of each (+)-isomer was 1-2 orders of magnitude less than that of the corresponding (-)- form, the differences being greater for the synephrines than the octopamines on both types of receptor.

Ligand binding studies were performed on α_1 and α_2 binding sites from rat cerebral cortex (using $^3[H]$ -prazosin and $^3[H]$ -yohlmbine respectively). The (-)-isomers were more active than the (+)- forms and the rank order of affinities of the former for both α_1 and α_2 sites was NA>m-octopamine = m-synephrine>p-octopamine.

It is concluded that \underline{m} - and \underline{p} -octopamine have similar potencies at α_1 -(and also at α_2) adrenoceptors and that they can be considered to be naturally occurring α_1 selective amines. However, if \underline{m} - and \underline{p} -octopamine are co-released with NA in amounts proportional to their concentrations \underline{in} vivo, their low activities at both types or receptor render this potential mechanism an unlikely one for any physiological role. Ibrahim, K.E. et al (1985) J. Neurochem. 44: 1862-7